USB 转 CAN 设备说明书(V1.01)

目 录

版本	编制人	日期	修改内容
V1.0	李兴华	2012-08-28	初始版本
V1.01	李兴华	2012-09-14	USB to CANBUS 界面更改

目录					
第一章	产品简介3				
1.1	概述3				
1.2	性能指标3-4				
1.3	典型应用4				
1.4	产品清单4				
第二章	外形及接口描述5				
2.1	产品外形5				
2.2	接口描述5				
2.3	指示灯说明5				
2.4	CAN 总线连接5-6				
2.5	默认配置6				
第三章	软件工具使用7				
3.1	软件安装7				
3.2	初始操作界面7				
3.3	激活软件				
3.4	软件常规界面9				
3.5	参数设置13-14				
第四章	标准帧,扩展帧格式15				
4.1	标准帧格式15				
4.2	扩展帧格式15				

第一章 产品概述

1.1 概述

UT-8251 是一个 USB 到 CAN 设备的适配器。采用 USB2.0 协议,用户无须安装 USB 驱动,即插即用。用户通过该适配器同 CAN 现场总线相连,可方便地通过 PC 机对现场总线设备进行调试,数据采集和控制。

UT-8251 在设计中充分考虑现场总线恶劣的电气环境。CAN 总线电路采用独立的 DCDC 电源模块,进行光电隔离,使该接口适配器具有很强的抗干扰能力,和不易损坏, 大大提高了系统在恶劣环境中使用的可靠性。在软件设计过程中,我们采用大容量的数 据缓存技术,和实时传送技术相结合,努力使设备获得很高的数据吞吐效率。因此 UT8251 适配器可广泛应用于实验室、工业控制、智能楼宇、汽车电子等领域中,对CAN 现场总线设备进行数据处理,数据采集,数据传输,控制。

UT-8251 可以利用生产厂家宇泰科技有限公司提供的 PC 机软件对 CAN 总线设备 进行数据收发,亦可以利用参照宇泰科技有限公司 提供的 DLL 动态连接库,和例程编 写自己的软件,或者整合到已有的软件系统中。在使用该时,用户无须了解 USB 协议, 直接调用提供的接口函数就可对 CAN 总线进行操作。

1.2 性能指标及规格

- ☆ USB2.0 协议到 CAN 总线的协议转换
- ☆ 1个 USB 接口, 一个 CAN 通道
- ☆ 支持 CAN 控制器状态监控
- ☆ 支持 CAN2.0A 和 CAN2.0B 协议,支持标准帧和扩展帧
- ☆ 支持双向传输, CAN 发送、CAN 接收
- ☆ 支持数据帧,远程帧格式
- ☆ CAN 控制器波特率在 5Kbps-1Mbps 之间可选,可以软件配置
- ☆ CAN 总线接口采用光电隔离、DC-DC 电源隔离

- ☆ 最大流量为每秒钟 4000 帧 CAN 总线数据
- ☆ 内部 CAN 接收缓冲区容量 600Messages (7800 bytes)
- ☆ 内部发送缓冲为双缓冲结构,提供 800Messages 的缓冲能力
- ☆ USB 直接供电,无须外接电源
- ☆ 隔离绝缘电压, 2500Vrms
- ☆ 工作温度, -20~85℃
- ☆ 工作电流, <100mA
- ☆ 外壳尺寸: 112.5mm*64mm*25mm, 金属铝材质

1.3 典型应用

- ☆ 通过 PC 或笔记本的 USB 接口实现对 CAN 总线网络的发送和接收
- ☆ 快速 CAN 网络数据采集、数据分析
- ☆ CAN 总线-USB 网关
- ☆ USB 接口转 CAN 网络接口
- ☆ 延长 CAN 总线的网络通讯长度
- ☆ 工业现场 CAN 网络数据监控
- ☆ CAN 总线设备现场调试

1.4 产品销售清单

UT-8251 接口适配器一只。

USB 连接线一根。

光盘1 张(说明书,两份,设备说明书,测试软件及编程说明书,CAN 总线通信测试 软件,以及例程 DLL,IB 等开发文件,CAN 总线相关资料等)

2.1 产品外形

2.2 接口描述

引脚	引脚名称	引脚含义
1	CANH	信息连接端
2	CANL	信号连接端
3	RES-	区配电阻端一
4	RES+	区配电阻端二
5	RST	复位
6	GND	信号线
7	SET	设置

2.3 指示灯说明

指示灯	颜色	功能	描述
PWR	红色	工作电源	灯亮表示转换器电源工作正常
TXD	绿色	CAN 发送	灯闪亮时表示 CAN 设备正在往总线上发送数据
RXD	黄色	CAN 接收	灯闪亮时表示 CAN 设备正在从总线上接收数据

2.4 CAN 总线连接

UT-8251 转换器和 CAN 总线连接的时候是 CANL 连接 CANL, CANH 连接 CANH。 按照 ISO 11898 规范,为了增强 CAN-bus 通讯的可靠性,CAN-bus 总线网络的两个端 点通常要加入终端匹配电阻(120Ω),如上图所示。终端匹配电阻的大小由传输电缆的 特性阻抗所决定,例如,双绞线的特性阻抗为 120Ω,则总线上的两个端点也应集成 120Ω 终端电阻。

UT-8251 转换器内部电路集成了 120Ω 的终端电阻,当 UT-8251 转换器作为终端设备时,用户可以在 UT-8251 转换器的 CAN 接口,引脚 3 即"Res-"、引脚 4 即"Res+"之间,只须短接就可以连通内部的端终电阻。

CAN 通讯线可以使用双绞线、屏蔽双绞线。若通讯距离超过 1KM 时,应保证线的截面积大于 1.0mm2。具体规格,应根据距离而定,常规是随距离的加长而适当加大。

2.5 默认配置

出厂默认: CAN 波特率 100Kbit/s, 屏蔽码 00000000, 即无屏蔽位。接收 CANID 为 00000001. 开机, CAN 接收中断关闭。普通工作模式, 非测试模式。

CANID 的设置为右对齐方式。

第三章 软件工具使用

3.1 软件安装 双击安装文件 CanToolInstall.EXE 即进入安装过程,安装完毕后,桌面出现图标

3.2 初始操作界面。双击之一,出现下面初始操作界面

USBtoCANBUS				_	
设备操作(<u>○</u>) 参数	数设定(<u>5</u>) 帮助(<u>H</u>)				
<u>۲</u> ۳	家ID:	产品ID:	版本号:		
自测模式 CAN接收开 CAN复位	 ↓ 设置 发送ID ↓ 设置 00000001 错误复位 EXC 	帧类型1 帧类型 标准帧 ▼ 数据帧 EL文件发送	型2 发送数据内容: ▼	0 字节 ┃	Ð
发送数据区:	清空 导出EXCEL				
序号	时间 II) 帧类型	帧长度	数据内容	
接收数据区:	清空 导出EXCEL				
序号	时间 II) 帧类型	帧长度	数据内容	

3.3 激活软件

连接好 UT-8251 转换器后,在设备操作下拉菜单栏选择"启动设备",出现"打开 成功"提示信息,点击"确定",软件进入活动状态。

USBtoCANBUS				_ 🗆 🗙
设备操作(<u>O</u>) 参数设定(<u>5</u>)	帮助(<u>H</u>)			
厂家ID: <mark>6</mark> 2	.51 产品ID: 170	1 版本号: 0	100	
已通过验证 USB接口正常	正常状态 CAN接口正常	自测模式 CANGSR:000000C	CAN接收关 CANICR:00000000	
自测模式 ▼ 设置 CAN接收开 ▼ 设置 CAN复位 错误复行	2 发送ID 帧类型1 2 00000001 标准帧 ▼ 2 EXCEL文件发送	帧类型2 发送数据内容: 0 效据帧 ▼	字节 	[] 5秒
发送数据区: 清空 序号 时间	与出EXCEL ID 帧类	型 帧长度	数据内容	
	C:\Program Files	\USBtoCANBUS\USBtoCAN.ex 开成功 ! 确定		
接收数据区: 清空	导出EXCEL	型(帧长度)	教裾内容	

USBtoCANBUS			
设备操作(<u>O</u>) 参数设定(<u>5</u>)	帮助(日)		
厂家ID: <mark>c25</mark>	1 产品ID: 170	1 版本号: 0	100
已通过验证 USB接口正常	正常状态 CAN接口正常	自测模式 CANGSR:0000000C	CAN接收关 CANICR:0000000
自测模式 ▼ 设置 CAN接收开 ▼ 设置 CAN复位 错误复位	】 发送ID 帧类型1 00000001 标准帧 ▼ 数 EXCEL文件发送	顺类型2 发送数据内容: 0 如据帧 ▼	字节
发送数据区: 清空	导出EXCEL		
序号 时间	 ID 帧类	型 帧长度	数据内容
接收数据区: 清空	导出EXCEL		
	 ID帧类3	型 帧长度	数据内容

3.4 软件常规界面。成功激活软件后,出现以下界面。

3.4.1 状态提示

状态栏区域包括如下几个设备状态描述项:

A、已通过验证,表示设备已经被验证为合法设备

B、正常模式,设备在正常工作是,是采用正常模式。如果用户需要验证设备 CAN 接口的好坏,可使用模式选择项,选择测试模式进行设置。测试模式工作时,请短接RES+,RES-以接入外部负载。

C、CAN 接口关,指的是 CAN 接口不接收来自总线的数据; CAN 接口开,指的是 CAN 接口可以接收来自总线的数据。这个状态也是可选择的。选择 CAN 接收关,进行设置

即可进入 CAN 接收关状态;选择 CAN 接收开,进行设置即可进入 CAN 接收开状态 D、USB 接口正常,指的是 CAN 总线到 USB 的数据无溢出;

E、CAN 接口正常,指的是 USB 接口至 CAN 总线的数据无溢出

F、CANGSR, CAN 接口状态寄存器内容, 32 位, 十六进制数据显示

位 31:24 BIT7 BIT6 BIT5 BIT3 BIT2 23:16 15:8 BIT4 BIT1 BIT0 序 命 保 BS TXERR RXERR ES TS RS TCS TBS DOS RBS 名 留 发送错 0,至 0,至 0,没 0,接收 意 接收错 0,CAN 0,两错 0, CAN 少一 小一 义 误计数 误计数 总 线 误计数 控制 有 出 缓冲无 CAN 器 空 现 超 报文可 器值 器值 开启 器值低 控 制 个请 个发 1, 于警戒 器 空 闲,1, 求未 送缓 载, 用,1接 CAN 值,1, 闲 CAN 发送 冲寄 1,出 收缓冲 总 线 至少一 1, 控制 完 存器 现 超 至少接 关闭 个错误 器 正 不能 收到一 CAN 成, 载 在 接 计数器 个报文 控 制 1,所 供 值高于 收一 器 正 有发 CPU 警戒值 在 发 个报 送请 使用 1,所 送报 文 求都 文 已经 有三 个缓 成功 完成 冲都 可使 用

以下依照从左到右,从高位到低位的顺序描述 CANGSR 各二进制位的意义:

G、CANICR, CAN 接口状态寄存器内容, 32 位, 十六进制数据显示

位序	名称	值	意义		
		00	仲裁在标识符的第一位(MS)丢失		
31:24		11	仲裁在 SRTS 位丢失(标准帧报文的 RTR 位)		
		12	仲裁在 IDE 位丢失		
	ALCBIT	13	仲裁在标识符的第12位丢失(只适用于扩展帧)		
		30	仲裁在标识符的最后一位丢失(只适用于扩展帧)		
		31	仲裁在 RTR 位丢失(只适用于扩展帧)		
		00	位错误		
22 22	EDDC1.0	01	格式错误		
23: 22	EKKC1.0	10	填充错误		
		11	其它错误		
21		0	发送过程中出错		
21	EKKDIK	1	接收过程中出错		
		错误码捕	获: 当 CAN 控制器检测到总线错误时,帧内错误的位置被捕获到		
		ERRBIT	字段中。这些捕获值反映了内部的状态变量,因此并不完全是线性		
		的 :			
		00011	帧起始		
		00010	ID28ID21		
		00110	ID20ID18		
		00100	起始位		
		00101	IDE 位		
		00111	ID1713		
		01111	ID12ID5		
	ERRBIT	01110	ID4ID0		
		01100	RTR 位		
		01101	保留位1		
20: 16		01001	保留位 0		
		01011	数据长度代码		
		01010	数据字段		
		01000	CRC 序列		
		11000	CRC 分隔符		
		11001	应答 slot		
		11011	应答分隔符		
		11010	帧结束		
		10010	暂停		
		10001	激活错误标志		
		10110	认可错误标志		
		10011	允许的显性位		
	-	10111	错误分隔符		
		11100	过载标志		

以下依照从左到右,从高位到低位的顺序描述 CANICR 各二进制位的意义:

3.4.2 工作模式设置

设备上电后,默认工作模式为正常工作模式,如果要测试设备可以选择测试模式 进行设置。

3.4.3 打开 CAN 接收

设备上电后, 默认为接收关, 如果要接收来自 CAN 的数据只要选择"CAN 接收开"进行设置即可。

3.4.4 数据发送

- 1、在发送 ID 栏填充正确的 ID, 使用十六进制格式, 四字节, 右对齐高位补 0;
- 2、选择帧类型(扩展帧,标准帧)
- 3、选择数据类型(远程帧,数据帧)
- 4、在数据内容栏填充十六进制数据。
- 5、点击发送即为手动发送,每点击一次数据就发送一次,如果使用自动发送,请选择 合适间隔(毫秒单位),选择自发送动。

3.4.5 数据接收

如果已经选择了 CAN 接收开,进行了设置,如果波特率设置正确,过滤码,及屏 蔽码设置正确,则在接收数据框显示正确的数据。

3.5 参数设置。

单击菜单栏的"参数设定",出现以下界面。

设备操作(<u>0</u>)参数设定(<u>5</u>)	帮助(H)			
厂家ID: <mark>c25</mark>	i1 产品ID: 170)1 版本号:	0100	
已通过验证 USB接口正常	正常状态 CAN接口正常	自测模式 CANGSR:0000000C	CAN接收关 CANICR:00000000	
自测模式 ↓ 设置 CAN接收开 设置 CAN复位 错误复位 发送数据区: 清空	」 发送ID 帧类型1 」 00000001 标准帧 ▼ 第 EXCEL文件发送, 导出EXCEL.	帧类型2 发送数据内容: 数据帧 ▼	: 0 字节 空 [自动发送, 间隔 10 音	2秒
<u> 序号 时间</u>	CAN参数: 波特率: 屏蔽码: 地址码: 过滤码:	100K (BIT/S) • 00000001 00000001 00000001	容 设置 设置 设置	
接收数据区: 清空	导出EXCEL			
序号 时间	ID 帧类	型(帧长度)	数据内容	

在使用设备前请进行对下面各项参数进行正确设置:

波特率,可以选择

5KBIT/S, 10KBIT/S,20KBIT/S

50KBIT/S,100KBIT/S,125KBIT/S,250KBIT/S,500KBIT/S,

800KBIT/S,1000KBIT/S

B、屏蔽码

使用十六进制数标识, 共四字节, 右对齐方式

1、相应位置

1,代表该位地址码(接收地址码)不在参与接收地址识别过程,即被忽略,被屏蔽
 2,相应为0,代表该为地址(接收地址码)是有效的,是参与接收地址比较过程的
 例0X0000002

屏蔽接收 CANID 的 BIT1 位,例如接收 CANID(SourceID

图示:

特例 1,如果欲接收所有 CAN 总线数据,可将屏蔽码设置为 0XFFFFFFFF

特例 2,如果只是接收某特定 ID 的总线设备数据,可将屏蔽码设置为 0X00000000

C、过虑码

设备在工作时将根据这个地址及屏蔽码内容决定是否接收来自 CAN 总线接口的数据。如果匹配该地址则接收该帧数据,否则忽略该帧数据。右对齐方式,高位补 0,十 六进制,四字节。

第四章 标准帧,扩展帧格式

4.1 标准帧格式

标识符长度 11 位 11bit IDENTIFIER, RTR 位为远程发送请求位,数据帧为显性, 远程帧为隐性。IDE 为显性,扩展帧为隐性。R0 保留位,显性。关于这里的 11bit IDENTIFIER 在 UT-8251 中是右对齐 CANID 的。

4.2 扩展帧格式

标识符 29 位,包括 11 (D28~D18) 基本 ID 和 18 位扩展 ID,在 UT8251 中是右齐的 29 位 CANID 关于 CANID 的设置还得遵循最高四位不能同时为 1 的规则。